Highlighting non-uniform temperatures close to liquid/solid surfaces


L. Noirez, P. Baroni, J.-F. Bardeau

 

[ApplPhysLett]

The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = −0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.


Agenda

<<

2020

 

<<

Mars

 

Aujourd’hui

LuMaMeJeVeSaDi
2425262728291
2345678
9101112131415
16171819202122
23242526272829
303112345
Aucun évènement à venir les 6 prochains mois